Question 60

If $$(a+\frac{1}{a})^2=3$$, the value of $$a^3+\frac{1}{a^3}$$ is

Solution

Given : $$(a+\frac{1}{a})^2=3$$

=> $$(a+\frac{1}{a})=\sqrt3$$ -----------(i)

Cubing both sides, we get :

=> $$(a+\frac{1}{a})^3=(\sqrt3)^3$$

=> $$a^3+\frac{1}{a^3}+3(a)(\frac{1}{a})(a+\frac{1}{a})=3\sqrt3$$

=> $$a^3+\frac{1}{a^3}+3(\sqrt3)=3\sqrt3$$     [Using (i)]

=> $$a^3+\frac{1}{a^3}=3\sqrt3-3\sqrt3=0$$

=> Ans - (A)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App