If $$\frac{a^2+b^2}{c^2}=\frac{b^2+c^2}{a^2}=\frac{c^2+a^2}{b^2}=\frac{1}{k}, (k\neq0)$$ then k=?
Given : $$\frac{a^2+b^2}{c^2}=\frac{b^2+c^2}{a^2}=\frac{c^2+a^2}{b^2}=\frac{1}{k}, (k\neq0)$$
=> $$a^2+b^2=\frac{c^2}{k}$$ ---------(i)
Similarly, $$b^2+c^2=\frac{a^2}{k}$$ ------------(ii)
and $$c^2+a^2=\frac{b^2}{k}$$ ----------(iii)
Adding equations (i),(ii) and (iii)
=> $$2(a^2+b^2+c^2)=\frac{a^2}{k}+\frac{b^2}{k}+\frac{c^2}{k}=\frac{a^2+b^2+c^2}{k}$$
=> $$2=\frac{1}{k}$$
=> $$k=\frac{1}{2}$$
=> Ans - (D)
Create a FREE account and get: