The value of $$\log_{a}({\frac{a}{b}})+\log_{b}({\frac{b}{a}})$$, for $$1<a\leq b$$ cannot be equal to
On expanding the expression we get $$1-\log_ab+1-\log_ba$$
$$or\ 2-\left(\log_ab+\frac{1}{\log_ba}\right)$$
Now applying the property of AM>=GM, we get that $$\frac{\left(\log_ab+\frac{1}{\log_ba}\right)}{2}\ge1\ or\ \left(\log_ab+\frac{1}{\log_ba}\right)\ge2$$ Hence from here we can conclude that the expression will always be equal to 0 or less than 0. Hence any positive value is not possible. So 1 is not possible.
Create a FREE account and get: