Question 62

The value of 

$$(1^3 + 2^3 + 3^3 + ........ + 15^3) - (1 + 2 + 3 + ......... + 15)$$ is

Solution

Sum of $$n$$ consecutive natural number cubes = $$[\frac{n(n+1)}{2}]^2$$

and sum of $$n$$ consecutive natural numbers = $$\frac{n(n+1)}{2}$$

Expression : $$(1^3 + 2^3 + 3^3 + ........ + 15^3) - (1 + 2 + 3 + ......... + 15)$$

= $$(\frac{15\times16}{2})^2-(\frac{15\times16}{2})$$

= $$(120)^2-120$$

= $$14400-120=14280$$


Create a FREE account and get:

  • All Quant Formulas and Shortcuts PDF
  • 100+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App