The value of
$$(1^3 + 2^3 + 3^3 + ........ + 15^3) - (1 + 2 + 3 + ......... + 15)$$ is
Sum of $$n$$ consecutive natural number cubes = $$[\frac{n(n+1)}{2}]^2$$
and sum of $$n$$ consecutive natural numbers = $$\frac{n(n+1)}{2}$$
Expression : $$(1^3 + 2^3 + 3^3 + ........ + 15^3) - (1 + 2 + 3 + ......... + 15)$$
= $$(\frac{15\times16}{2})^2-(\frac{15\times16}{2})$$
= $$(120)^2-120$$
= $$14400-120=14280$$
Create a FREE account and get: