Sign in
Please select an account to continue using cracku.in
↓ →
Find the value of $$\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}$$
$$\frac{\cos 30^\circ - \sin 30^\circ}{\sin 60^\circ + \cos 60^\circ}$$ = $$\frac{\frac{\sqrt{3}}{2}-\frac{1}{2}}{\frac{\sqrt{3}}{2}+\frac{1}{2}}$$
= $$\frac{\frac{\sqrt{3}-1}{2}}{\frac{\sqrt{3}+1}{2}}$$
= $$\frac{\sqrt{3}-1}{\sqrt{3}+1}$$
= $$\frac{\sqrt{3}-1}{\sqrt{3}+1}\times\frac{\sqrt{3}-1}{\sqrt{3}-1}$$
= $$\frac{\left(\sqrt{3}\right)^2+1^2-2.\sqrt{3}.1}{\left(\sqrt{3}\right)^2-1^2}$$
= $$\frac{3+1-2\sqrt{3}}{3-1}$$
= $$\frac{4-2\sqrt{3}}{2}$$
= $$2-\sqrt{3}$$
Hence, the correct answer is Option A
Create a FREE account and get: