Question 64

If $$x=(4096)^{7+4\sqrt{3}}$$, then which of the following equals to 64?

Solution

$$x=2^{12\left(7+4\sqrt{\ 3}\right)}$$.

$$x^{\frac{7}{2}}=2^{42\left(7+4\sqrt{\ 3}\right)}$$

$$x^{2\sqrt{\ 3}}=2^{24\sqrt{\ 3}\left(7+4\sqrt{\ 3}\right)}$$

$$\frac{x^{\frac{7}{2}}}{x^{2{\sqrt{3}}}}$$ = $$2^{\left(7+4\sqrt{\ 3}\right)\left(42-24\sqrt{\ 3}\right)}=2^{\left(7+4\sqrt{\ 3}\right)\left(7-4\sqrt{\ 3}\right)6}$$ =$$2^6$$.

Hence C is correct answer.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App