Question 66

If $$3x+2\mid y\mid+y=7$$ and $$x+\mid x \mid+3y=1$$ then $$x+2y$$ is:

Solution

We need to check for all regions:

x >= 0, y >= 0

x >= 0, y < 0

x < 0, y >= 0

x < 0, y < 0

However, once we find out the answer for any one of the regions, we do not need to calculate for other regions since the options suggest that there will be a single answer.

Let us start with x >= 0, y >= 0,

3x + 3y = 7

2x + 3y = 1

Hence, x = 6 and y = -11/3

Since y > = 0, this is not satisfying the set of rules.

Next, let us test x >= 0, y < 0,

3x - y = 7

2x + 3y = 1

Hence, y = -1

x = 2.

This satisfies both the conditions. Hence, this is the correct point.

WE need the value of x + 2y

x + 2y = 2 + 2(-1) = 2 - 2 = 0.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App