Expression : $$a^2 + 13b^2 + c^2 - 4ab - 6bc = 0$$
=> $$a^2+4b^2-2(a)(2b)+9b^2+c^2-2(3b)(c)=0$$
=> $$(a-2b)^2+(3b-c)^2=0$$
Since, sum of two positive numbers is zero, thus both the numbers = 0
=> $$a-2b=0$$ and $$3b-c=0$$
=> $$a=2b$$ and $$3b=c$$
Multiplying by '3', we get :
=> $$3a=6b$$ and $$9b=3c$$
=> $$\frac{a}{b}=\frac{6}{3}$$ and $$\frac{b}{c}=\frac{3}{9}$$
=> $$a:b:c=6:3:9$$
=> Required ratio = $$2:1:3$$
=> Ans - (C)
Create a FREE account and get: