The circum-centre of a triangle ABC is O. If ∠BAC = 85o, ∠BCA = 75o, then ∠OAC is of
Given : O is the circum-centre of triangle ABC. ∠BAC = $$85^\circ$$, ∠BCA = $$75^\circ$$
To find : ∠OAC = $$\theta$$ = ?
Solution : In $$\triangle$$ ABC
=> $$\angle$$ A + $$\angle$$ B + $$\angle$$ C = $$180^\circ$$
=> $$85^\circ+\angle B+75^\circ=180^\circ$$
=> $$\angle B=180-160=20^\circ$$
In a circle, angle subtended by an arc at the centre is double the angle subtended by the same arc on any other point on the circle
=> $$\angle AOC = 2 \times \angle ABC$$
=> $$\angle$$ AOC = $$2\times20=40^\circ$$
Also, in $$\triangle$$ AOC, OA = OC (radii of circle), => $$\angle$$ OAC = $$\angle$$ OCA = $$\theta$$
=> $$\angle$$ AOC + $$\angle$$ OAC + $$\angle$$ OCA = $$180^\circ$$
=> $$40^\circ+\theta+\theta=180^\circ$$
=> $$2\theta=180-40=140^\circ$$
=> $$\theta=\frac{140}{2}=70^\circ$$
=> Ans - (A)
Create a FREE account and get: