A, B and C are three points on a circle with centre O. The tangent at C meets BA produced at T. If ∠ATC = 30° and ∠ACT = 48°,then what is the value of ∠AOB ?
Given : ∠ATC = 30° and ∠ACT = 48°
To find : ∠AOB = $$\theta$$ = ?
Solution : OA = OC = radius
=> $$\angle OAC=\angle OCA = x$$
Similarly, $$\angle OAB=\angle OBA = y$$
In $$\triangle$$ ACT,
=> $$\angle ACT+\angle ATC + \angle CAT=180^\circ$$
=> $$48^\circ+30^\circ \angle CAT=180^\circ$$
=> $$\angle CAT=180^\circ-78^\circ=102^\circ$$ -------------(i)
Also, radius intersects the tangent at the circumference of the circle at right angle.
=> $$\angle OCT=90^\circ$$
=> $$x+48^\circ=90^\circ$$
=> $$x=90^\circ-48^\circ=42^\circ$$ -------------(ii)
Now, at point A, => $$y+x+\angle CAT=180^\circ$$ [Supplementary angles]
Using equations (i) and (ii),
=> $$y+42^\circ+102=180^\circ$$
=> $$y=180^\circ-144^\circ=36^\circ$$ ------------(iii)
In $$\triangle$$ AOB,
=> $$\angle OBA+\angle OAB + \angle AOB=180^\circ$$
=> $$y+y+\theta=180^\circ$$
Using equation (iii), we get ;
=> $$(2 \times 36^\circ)+\theta=180^\circ$$
=> $$\theta=180^\circ-72^\circ=108^\circ$$
=> Ans - (D)
Create a FREE account and get: