Sign in
Please select an account to continue using cracku.in
↓ →
If $$(x+\frac{1}{x})^{2}$$=3 then the value $$x^{3}$$+$$\frac{1}{x^{3}}$$ is
Given, $$\left(x+\ \frac{\ 1}{x}\right)^2=3$$
$$x+\ \frac{\ 1}{x}=3^{\ \frac{\ 1}{2}}$$
Hence $$x^3+\ \frac{\ 1}{x^3}=\left(x+\ \frac{\ 1}{x}\right)^3-3.x.\ \frac{\ 1}{x}\left(x+\ \frac{\ 1}{x}\right)$$
$$=\left(3^{\ \frac{\ 1}{2}}\right)^3-3\left(3^{\ \frac{\ 1}{2}}\right)$$
$$= 3^{\ \frac{\ 3}{2}}-3^{\ \frac{\ 3}{2}}$$
$$= 0$$
Create a FREE account and get: