If $$(5.55)^x = (0.555)^y = 1000$$, then the value of $$\frac{1}{x} - \frac{1}{y}$$ is
We have, $$(5.55)^x = (0.555)^y = 1000$$
Taking log in base 10 on both sides,
x($$\log_{10}555$$-2) = y($$\log_{10}555$$-3) = 3
Then, x($$\log_{10}555$$-2) = 3.....(1)
y($$\log_{10}555$$-3) = 3 .....(2)
From (1) and (2)
=> $$\log_{10}555$$=$$\ \frac{\ 3}{x}$$+2=$$\ \frac{\ 3}{y}+3$$
=> $$\frac{1}{x} - \frac{1}{y}$$ = $$\frac{1}{3}$$
Create a FREE account and get: