Question 76

If $$m$$ and $$n$$ are natural number such that $$2^m - 2^n = 960$$, what is the value of $$m$$?

Solution

Expression : $$2^m - 2^n = 960$$ -------------(i)

=> $$2^m>960$$

=> $$m\geq10$$

If, $$m=10$$

Substituting in equation (i), we get : $$1024-2^n=960$$

=> $$2^n=64=2^6$$

=> $$n=6$$

Since, both are natural numbers, => $$m=10$$

=> Ans - (A)


Create a FREE account and get:

  • All Quant Formulas and Shortcuts PDF
  • 100+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App