if x and y are positive real numbers satisfying $$x+y=102$$, then the minimum possible valus of $$2601(1+\frac{1}{x})(1+\frac{1}{y})$$ is
Correct Answer: 2704
Now we have $$2601\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=2601\left(\frac{xy+y+x+1}{xy}\right)$$
Now we know that x+y=102. Substituting it in the above equation
$$2601\left(\frac{xy+y+x+1}{xy}\right)=2601\left(\frac{103}{xy}+1\right)$$
Maximum value of xy can be found out by AM>= GM relationship
$$\ \frac{\ x+y}{2}\ge\ \sqrt{xy}\ or\ \ \sqrt{\ xy}\le\ 51\ or\ xy\le\ 2601$$
Hence the maximum value of "xy" is 2601. Substituting in the above equation we get
$$2601\left(\ \frac{\ 103+2601}{2601}\right)=2704$$
Create a FREE account and get: