Which value among $$\sqrt[3]{5},\sqrt[4]{6},\sqrt[6]{12},\sqrt[12]{276}$$ is the largest ?
Values :Â $$\sqrt[3]{5},\sqrt[4]{6},\sqrt[6]{12},\sqrt[12]{276}$$
Taking L.C.M. of exponents, => L.C.M.(3,4,6,12) = 12
Now, multiplying all the exponents by 12, we get :
Values : $$(5)^4,(6)^3,(12)^2,(276)^1$$
=Â $$625,216,144,276$$
Thus, $$625\equiv \sqrt[3]{5}$$ is the largest.
=> Ans - (A)
Create a FREE account and get: