Edit MetaData
Let$$I = \int\frac{e^x}{e^{4x}+e^{2x}+1}dx, J = \int\frac{e^{-x}}{e^{-4x}+e^{-2x}+1}dx$$.Then, for an arbitrary constant C, the value of J - I equals
$$\frac{1}{2}\log\left(\frac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} + e^{x} + 1}{e^{2x} - e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{4x} + e^{2x} + 1}{e^{4x} - e^{2x} + 1}\right)+C$$
Create a FREE account and get:
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Quick, Easy and Effective Revision
By proceeding you agree to create your account
Free CAT Formulas PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.