If $$(\frac{x}{y})^{a-4}=(\frac{y}{x})^{2a-5}$$, then what is the relation between x and y?
Given : $$(\frac{x}{y})^{a-4}=(\frac{y}{x})^{2a-5}$$
=> $$(\frac{y}{x})^{4-a}=(\frac{y}{x})^{2a-5}$$
=> $$4-a=2a-5$$
=> $$2a+a=5+4=9$$
=> $$a=\frac{9}{3}=3$$
$$\therefore$$ $$(\frac{x}{y})^{3-4}=(\frac{y}{x})^{2(3)-5}$$
=> $$(\frac{x}{y})^{-1}=(\frac{y}{x})^{1}$$
=> $$\frac{y}{x}=\frac{y}{x}$$
Thus, relation cannot be established.
=> Ans - (B)
Create a FREE account and get: