What is the least value of $$tan^2θ + cot^2θ + sin^2θ + cos^2θ + sec^2θ + cosec^2θ$$ ?
Expression : $$tan^2θ + cot^2θ + sin^2θ + cos^2θ + sec^2θ + cosec^2θ$$
Using, $$(sec^2\theta-tan^2\theta=1)$$ and $$(cosec^2\theta-cot^2\theta=1)$$
= $$(sin^2\theta+cos^2\theta)+tan^2\theta+cot^2\theta+(1+tan^2\theta)+(1+cot^2\theta)$$
= $$1+1+1+2tan^2\theta+2cot^2\theta$$
= $$3+2(tan^2\theta+cot^2\theta)$$
Minimum value of $$(tan^2\theta+cot^2\theta)=2$$
= $$3+2(2)=3+4=7$$
=> Ans - (D)
Create a FREE account and get: