For any positive integer n, let $$S_n : (0, \infty) \rightarrow R$$ be defined by
$$S_n(x) = \sum_{k=1}^n \cot^{-1}\left(\frac{1 + k(k + 1)x^2}{x}\right)$$,
where for any $$x \in R, \cot^{-1}(x) \in (0, \pi)$$ and $$\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$. Then which of the following statements is (are) TRUE ?
Create a FREE account and get: