Question 16

Let x and y be two positive integers and p be a prime number. If x (x - p) - y (y + p) = 7p, what will be the minimum value of x - y?

Solution

The given equation is,

x (x - p) - y (y + p) = 7p

$$x^2-px-y^2-py=7p$$

$$x^2-y^2-px-py=7p$$

$$\left(x+y\right)\left(x-y\right)-p\left(x+y\right)=7p$$

$$\left(x-y-p\right)\left(x+y\right)=7p$$

As '7' & 'p' both are prime numbers

$$\left(x-y-p\right)\left(x+y\right)$$ can be expressed as $$\left(7\times\ p\right)\ or\ \left(7p\times\ 1\right)$$

Case (i) - $$\left(x+y\right)\ \times\ \left(x-y-p\right)=7\times\ p$$

                $$x+y+x-y-p=7+ p$$

                $$2x-p=7+p$$

                $$x=\frac{7}{2}+p$$

But it's given that 'x' is a positive integer. This case is not possible.

Case (ii) - $$\left(x+y\right)\ \times\ \left(x-y-p\right)=7p\times\ 1$$

                 $$x+y+x-y-p=7p+1$$

                 $$2x-p=7p+1$$   

                 $$x=\frac{1}{2}+4p$$

But it's given that 'x' is a positive integer. This case is not possible.

The given equation is not possible with given conditions.

Option (E) is correct. 

Video Solution

video

Related Formulas With Tests

cracku

Boost your Prep!

Download App