In a right angled triangle, the product of two sides is equal to half of the square of the third side i.e., hypotenuse. One of the acute angles must be
Let the sides of the triangle ABC(right angled at B) be 'a','b','c' and c is hypotenuse
Given that $$a\times b=$$ $$\frac{c^{2}}{2}$$ $$\Rightarrow$$ $$ c^{2}$$=2ab
We know that $$c^{2}$$=$$a^{2}+b^{2}$$
Substituting $$c^{2}$$ value in above equation
2ab$$=a^{2}+b^{2}$$
$$\Rightarrow$$Â $$a^{2}-2ab+b^{2}=0$$
$$\Rightarrow$$Â $$(a-b)^{2}=0$$
$$\Rightarrow a=b$$
In a triangle, if two sides are equal then the opposite angles must be equal
 We know that $$\angle A+\angle B+\angle C=180^\circ$$
Here $$\angle A$$=$$\angle C$$
$$90^\circ+2\angle A$$=$$180^\circ$$
$$\therefore \angle A$$=$$\angle C$$=$$45^\circ$$
Create a FREE account and get: