If a + b + c = 2s, then $$\frac{(s-a)^{2}+(s-b)^{2}+(s-c)^{2}+s^{2}}{a^{2}+b^{2}+c^{2}}$$ is equal to
a + b + c = 2s
put a=b=c=1, then 2s = 3, s = 3/2.
then, s-a = s - b = s - c = 1/2
$$\frac{(s-a)^{2}+(s-b)^{2}+(s-c)^{2}+s^{2}}{a^{2}+b^{2}+c^{2}}$$
=Â $$\frac{(1/2)^{2}+(1/2)^{2}+(1/2)^{2}+(3/2)^{2}}{1^{2}+1^{2}+1^{2}}$$
= $$\frac{(3/4)+(9/4)}{3}$$
= $$\frac{12/4}{3}$$
= 1
only option C satisfies this.
so the answer is option C.
Create a FREE account and get: