Sign in
Please select an account to continue using cracku.in
↓ →
If xy(x+y)=1 then, the value of $$\frac{1}{x^{3}y^{3}}-x^{3}-y^{3}$$ is
xy(x+y)=1
x+y = 1/xy
apply cube on both sides,
$$(x+y)^{3}$$ = $$\frac{1}{x^{3}y^{3}}$$
$$x^{3}+y^{3}+3xy(x+y)$$ = $$\frac{1}{x^{3}y^{3}}$$
$$x^{3}+y^{3}+3(1)$$ = $$\frac{1}{x^{3}y^{3}}$$
3 = $$\frac{1}{x^{3}y^{3}}$$ - $$x^{3}-y^{3}$$
so the answer is option A.
Create a FREE account and get: