Question 3

If $$p=\sqrt{72-\sqrt{72-\sqrt{72-\sqrt{72-......\infty}}}}$$, then find the value of $$2p^2+1$$.

Solution

Expression : $$p=\sqrt{72-\sqrt{72-\sqrt{72-\sqrt{72-......\infty}}}}$$

=> $$p=\sqrt{72-p}$$

Squaring both sides, we get :

=> $$p^2=72-p$$

=> $$p^2+p-72=0$$

=> $$p^2+9p-8p-72=0$$

=> $$p(p+9)-8(p+9)=0$$

=> $$(p+9)(p-8)=0$$

=> $$p=-9,8$$

But $$p$$ cannot be negative, thus $$p=8$$

To find : $$2p^2+1$$

= $$2(8)^2+1=128+1=129$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App