Given : $$xy+yz+zx=10$$ -------------(i)
Also, $$x+y+z=6$$ ------------(ii)
Squaring both sides, we get :
=> $$(x+y+z)^2=(6)^2$$
=> $$(x^2+y^2+z^2)+2(xy+yz+zx)=36$$
Substituting value from equation (i),Â
=> $$x^2+y^2+z^2+2(10)=36$$
=> $$x^2+y^2+z^2=36-20=16$$Â ------------(iii)
To find : $$x^{3}+y^{3}+z^{3}-3xyz$$Â
= $$(x+y+z)[(x^2+y^2+z^2)-(xy+yz+zx)]$$
Substituting values from equations (i), (ii) and (iii),
= $$(6)(16-10)$$
= $$6\times6=36$$
=> Ans - (C)
Create a FREE account and get: