What is value of $$(6x^2 - 5y^2)(6x^2 + 5y^2)$$, If $$x=\frac{1}{\sqrt{3}}$$ and $$y=\frac{1}{\sqrt{5}}$$ ?
GivenĀ :Ā $$x=\frac{1}{\sqrt{3}}$$ and $$y=\frac{1}{\sqrt{5}}$$
=> $$x^2=\frac{1}{3}$$ andĀ $$y^2=\frac{1}{5}$$
Again, squaring both terms, we getĀ :Ā $$x^4=\frac{1}{9}$$ andĀ $$y^4=\frac{1}{25}$$ -------------(i)
To findĀ :Ā $$(6x^2 - 5y^2)(6x^2 + 5y^2)$$
Using, $$(a-b)(a+b)=a^2-b^2$$ and substituting values from equation (i),
= $$36x^4-25y^4$$
= $$(36\times\frac{1}{9})-(25\times\frac{1}{25})$$
= $$4-1=3$$
=> Ans - (B)
Create a FREE account and get: