Given :  $$z=5+2\sqrt{6}$$ ------------(i)
=>Â $$\frac{1}{z}=\frac{1}{5+2\sqrt{6}}$$
=>Â $$\frac{1}{z}=\frac{1}{5+2\sqrt{6}}\times(\frac{5-2\sqrt6}{5-2\sqrt6})$$
=> $$\frac{1}{z}=\frac{5-2\sqrt6}{25-24}=5-2\sqrt6$$ ------------(ii)
To find : $$z^{2}+\frac{1}{z^{2}}$$
Using, $$x^2+y^2=(x+y)^2-2xy$$
= $$(z+\frac{1}{z})^2-2(z)(\frac{1}{z})$$
Substituting values from equations (i) and (ii), we get :
= $$[(5+2\sqrt6)+(5-2\sqrt6)]^2-2(z)(\frac{1}{z})$$
= $$(10)^2-2=100-2=98$$
=> Ans - (C)
Create a FREE account and get: