Let the radius of small circle =Â $$r_1$$
Radius of larger circle =Â $$r_2$$
From the figure,
OA > AC
$$\Rightarrow$$ Â $$r_2$$ > 2$$r_1$$
$$\Rightarrow$$ Â $$\frac{r_1}{r_2}<\frac{1}{2}$$
From the figure,
QC$$\bot\ $$AP and PB$$\bot\ $$AP
Both QC and PB are perpendicular to same line
$$\Rightarrow$$Â QC is parallel PB
$$\triangle$$AQC is similar to $$\triangle$$APB
$$\Rightarrow$$Â $$\frac{AC}{AB}=\frac{QC}{PB}$$
$$\Rightarrow$$ Â $$\frac{2r_1}{2r_2}=\frac{QC}{PB}$$
$$\Rightarrow$$ Â $$\frac{QC}{PB}=\frac{r_1}{r_2}$$
$$\Rightarrow$$ Â $$\frac{QC}{PB}<\frac{1}{2}$$
$$\Rightarrow$$ Â $$QC<\frac{1}{2}PB$$
Hence, the correct answer is Option A
Create a FREE account and get: