The angle subtended by the chord of length 10 cm is 120° at the centre. Calculate the distance of the chord (in cm) from the centre.
Given : $$\angle$$ AOB = 120° and AB = 10 cm
To find : OC = ?
Solution : Perpendicular from the centre to the chord bisects the chord, => AC = CB = $$\frac{10}{2}=5$$ cm
Also, $$\angle$$ AOC = $$\angle$$ COB = $$\frac{120}{2}=60^\circ$$
Thus, in $$\triangle$$ BOC,
=> $$tan(\angle COB)=\frac{BC}{OC}$$
=> $$tan(60^\circ)=\frac{5}{OC}$$
=> $$OC=\frac{5}{\sqrt3}$$ cm
=> Ans - (A)
Create a FREE account and get: