Calculate the value of $$\angle OBC+\angle BAC$$, if O is the circum-centre of the triangle ABC inscribed in the circle.
O is the circumcentre of the triangle, =>Â $$\angle$$Â BOC =Â $$2\angle$$Â BAC -------------(i)
OB = OC = radius of circle => $$\angle$$ OBC =Â $$\angle$$Â OCB
In $$\triangle$$ OBC, => $$\angle$$ OBC + $$\angle$$ OCB + $$\angle$$ BOC = $$180^\circ$$
=> $$2\angle$$Â OBC +Â $$2\angle$$Â BAC = $$180^\circ$$ Â Â [Using equation (i)]
=> $$2$$($$\angle$$Â OBC +Â $$\angle$$Â BAC) = $$180^\circ$$
=>Â $$\angle$$Â OBC +Â $$\angle$$Â BAC = $$\frac{180}{2}=90^\circ$$
=> Ans - (B)
Create a FREE account and get: