The area of a right angled triangle ABC, right angled at B, is 46 sq units. A median is drawn from A to BC which intersects at D. Find the area (in sq. units) of triangle ABD.
Note :- A median divides a triangle into two parts of equal areas.
Proof :
It is given that $$ar(\triangle ABC)=46$$ sq.units
Also, AD bisects BC, let BC = $$2x$$ units => BD = $$\frac{2x}{2}=x$$ units
$$\therefore$$Â $$\frac{ar(\triangle ABD)}{ar(\triangle ABC)}=\frac{\frac{1}{2}\times(AB)\times(BD)}{\frac{1}{2}\times(AB)\times(BC)}$$
=> $$\frac{\triangle}{46}=\frac{x}{2x}$$
=> $$\triangle=\frac{46}{2}=23$$ sq.units
=> Ans - (B)
Create a FREE account and get: