The value ofÂ
$$\frac{9}{15} of \left(\frac{2}{3} \div \frac{2}{3} of \frac{3}{2}\right) \div \left(\frac{3}{4} \times \frac{3}{4} \div \frac{3}{4} of \frac{4} {3}\right) of \left(\frac{5}{4} \div \frac{5}{2} \times \frac{2}{5} of \frac{4}{5}\right)$$ is:
$$\frac{9}{15} of \left(\frac{2}{3} \div \frac{2}{3} of \frac{3}{2}\right) \div \left(\frac{3}{4} \times \frac{3}{4} \div \frac{3}{4} of \frac{4} {3}\right) of \left(\frac{5}{4} \div \frac{5}{2} \times \frac{2}{5} of \frac{4}{5}\right)$$
We know that "of" can be replace by multiply,Â
$$\Rightarrow \frac{9}{15} of \left(\frac{2}{3} \div 1 \right) \div \left(\frac{3}{4} \times \frac{3}{4} \div 1 \right) of \left(\frac{5}{4} \div \frac{5}{2} \times \frac{8}{25} \right)$$
Now, solving small brakets,
$$\Rightarrow \frac{9}{15} of \left(\frac{2}{3} \right) \div \left(\frac{9}{16} \right) of \left(\frac{10}{20} \times \frac{8}{25} \right)$$Create a FREE account and get: