Given that,
x+y =12 and xy = 27
We know that $$(x-y)=\sqrt{(x+y)^2-4xy}$$
$$\Rightarrow (x-y)=\sqrt{12^2-4\times 27}=\sqrt{144-108}$$
$$\Rightarrow (x-y)=\sqrt{36}=6$$
Now, We know that $$(x-y)^3=x^3-y^3-3xy(x-y)$$
$$\Rightarrow 6^3=x^3-y^3-3\times 27\times(6)$$
$$\Rightarrow 216=x^3-y^3-486$$
$$\Rightarrow x^3-y^3=486+216=702$$
Create a FREE account and get: