$$\sqrt{2x-1}$$ = 2 + $$\sqrt{x-4}$$
Squaring both sides we will get
$$(\sqrt{(2x-1)})^{2}$$ =$$(2+\sqrt{(x-4)})^{2}$$
2x - 1 = 4 + (x-4) + 4 $$\sqrt{x-4}$$
2x -x - 1 = 4 $$\sqrt{x-4}$$
x - 1 = 4 $$\sqrt{x-4}$$
Again squaring both sides ,
$$(x-1)^{2}$$ = 4$$(\sqrt{(x-4)})^{2}$$
$$x^2$$ + 1 -2x = 16(x-4)
$$x^2$$ + 1 - 2x = 16x - 64
$$x^2$$ -18x + 65 = 0
On solving the above equation ,we get two rational roots that are 13 and 5
Create a FREE account and get: