The number of solutions to the equation $$\mid x \mid (6x^2 + 1) = 5x^2$$ is
Correct Answer: 5
For x <0, -x($$6x^2+1$$) = $$5x^2$$
=> ($$6x^2+1$$) = -5x
=> ($$6x^2 + 5x+ 1$$) = 0
=>($$6x^2 + 3x+2x+ 1$$) = 0
=> (3x+1)(2x+1)=0 =>x=$$\ -\frac{\ 1}{3}$$ or x=$$\ -\frac{\ 1}{2}$$
For x=0, LHS=RHS=0 (Hence, 1 solution)
For x >0, x($$6x^2+1$$) = $$5x^2$$
=> ($$6x^2 - 5x+ 1$$) = 0
=>(3x-1)(2x-1)=0 =>x=$$\ \frac{\ 1}{3}$$ or x=$$\ \frac{\ 1}{2}$$
Hence, the total number of solutions = 5
Create a FREE account and get: