For the following questions answer them individually
If the sum of ten different positive integers is 100, then what is the greatest possible number among these 10 numbers?
If N = 0.369369369369… and M = 0.531531531531…, then what is the value of $$(\frac{1}{N}) + (\frac{1}{M})$$?
If $$A = \frac{0.216 + 0.008}{0.36 + 0.04 - 0.12}$$ and $$B = \frac{0.729 - 0.027}{0.81 + 0.09 + 0.27}$$, then what is the value of $$(A^2 + B^2)^2?$$
If $$A = \frac{1}{1 \times 2} + \frac{1}{1 \times 4} + \frac{1}{2 \times 3} + \frac{1}{4 \times 7} + \frac{1}{3 \times 4} + \frac{1}{7 \times 10}...$$ upto 20 terms, then what is the value of $$A?$$
If $$56 \times 75 \times 60 \times 84 \times 210 = 2^p \times 3^q \times 5^r \times 7^s$$, then what is the value of $$\left[\frac{(p + q)}{s}\right] + r$$?
If $$A = 3\frac{1}{4} \times 4Â \frac{1}{4} \div 34 - \frac{47}{32} + \frac{47}{16}$$ and $$B = 2\frac{1}{2} \times 5 \frac{1}{2} \div 55 - \frac{11}{10}$$, then what is the value of $$A - B?$$
If the least common multiple of two numbers, 1728 and K is 5184, then how many values of K are possible?