A polynomial y=$$ax^{3} + bx^{2 }+ cx + d$$ intersects x-axis at 1 and -1, and y-axis at 2. The value of b is:
Expression :  $$ax^{3} + bx^{2 }+ cx + d$$
When it intersects x-axis at x = 1, => Point = (1,0)
=> $$a(1)^3 + b(1)^2 + c(1) + d = 0$$
=> $$a + b + c + d = 0$$ --------Eqn(I)
Similarly at (-1,0)
=> $$a(-1)^3 + b(-1)^2 + c(-1) + d = 0$$
=> $$-a + b -c + d = 0$$ => $$(a + c) = (b + d)$$
Substituting it in eqn(I), we get :Â
=> $$2 (b + d) = 0$$ => $$b + d = 0$$ ---------Eqn(II)
When it intersects y-axis at  = 2, => Point = (0,2)
=> $$a(0)^3 + b(0)^2 + c(0) + d = 2$$
=> $$d = 2$$
Substituting it in Eqn(II), => $$b = -2$$