Arrange the following in increasing order:
A) $$\sqrt[4]{3}$$
B) $$\sqrt[3]{2}$$
C) $$\sqrt[6]{5}$$
D) $$\sqrt[6]{7}$$
Choose the correct answer from the options given below :
We can rewrite the following as:
A) $$\sqrt[4]{3}$$ =Â $$3^{\dfrac{1}{4}}$$
B) $$\sqrt[3]{2}$$ =Â $$2^{\dfrac{1}{3}}$$
C) $$\sqrt[6]{5}$$ =Â $$5^{\dfrac{1}{6}}$$
D) $$\sqrt[6]{7}$$ =Â $$7^{\dfrac{1}{6}}$$
Now, we will make the denominator of all equal:
A)$$3^{\dfrac{3}{12}}$$
B) $$2^{\dfrac{4}{12}}$$
C) $$5^{\dfrac{2}{12}}$$
D) $$7^{\dfrac{2}{12}}$$
Simplifying further, we get,Â
A)$$3^{\dfrac{3}{12}}$$ =Â $$\left(3^3\right)^{\dfrac{1}{12}}=\left(27\right)^{\dfrac{1}{12}}$$
B) $$2^{\dfrac{4}{12}}$$ =Â $$\left(2^4\right)^{\dfrac{1}{12}}=\left(16\right)^{\dfrac{1}{12}}$$
C) $$5^{\dfrac{2}{12}}$$ =Â $$\left(5^2\right)^{\dfrac{1}{12}}=\left(25\right)^{\dfrac{1}{12}}$$
D) $$7^{\dfrac{2}{12}}$$ =Â $$\left(7^2\right)^{\dfrac{1}{12}}=\left(49\right)^{\dfrac{1}{12}}$$
Arranging them in sequence: We get: B < C < A < D
Create a FREE account and get: