Question 7

A) If $$\frac{1}{x} : \frac{1}{y} : \frac{1}{z}$$ = 2 : 3 : 5, then x : y : z = 15 : 10 : 6
B) If 4p = 6q = 9r, then p : q : r = 9 : 6 : 4
C) If 2A = 3B = 4C, then A : B : C = 3 : 4 : 6
D) If P : Q : R = 2 : 3 : 4, then $$\frac{P}{Q} : \frac{Q}{R} : \frac{R}{P}$$ = 9 : 8 : 24

Choose the correct answer from the options given below:

Solution

A: If $$\frac{1}{x} : \frac{1}{y} : \frac{1}{z}$$ = 2 : 3 : 5, then x : y : z = 15 : 10 : 6

$$x:y:z\ =\ \frac{1}{2}:\frac{1}{3}:\frac{1}{5}=\frac{15}{30}:\frac{10}{30}:\frac{6}{30}$$

Hence, x : y : z = 15 : 10 : 6

Correct

B: If 4p = 6q = 9r, then p : q : r = 9 : 6 : 4

Let 4p = 6q = 9r = k

Therefore, p = k/4

q = k/6

r = k/9

Hence, p : q : r = $$\frac{k}{4}:\frac{k}{6}:\frac{k}{9}=\frac{9k}{36}:\frac{6k}{36}:\frac{4k}{36}=9:6:4$$

Correct

C: If 2A = 3B = 4C, then A : B : C = 3 : 4 : 6

Let 2A = 3B = 4C = k

then A = k/2

B = k/3

C = k/4

So, A:B:C = $$\frac{k}{2}:\frac{k}{3}:\frac{k}{4}=\frac{6k}{12}:\frac{4k}{12}:\frac{3k}{12}=6:4:3$$

Incorrect

D: If P : Q : R = 2 : 3 : 4, then $$\frac{P}{Q} : \frac{Q}{R} : \frac{R}{P}$$ = 9 : 8 : 24

Let P = 2k so Q and R will be 3k and 4k

SO, $$\frac{P}{Q}:\frac{Q}{R}:\frac{R}{P}=\frac{2k}{3k}:\frac{3k}{4k}:\frac{4k}{2k}=\frac{2}{3}:\frac{3}{4}:2=8:9:24$$

Incorrect


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with detau solutions PDF
  • Top 500 MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App