Question 19

Find the value of $$\sqrt{\frac{2 + \sqrt3}{2 - \sqrt3}}$$

Correct to three places of decimal.

Solution

Let us consider $$\frac{2 + \sqrt3}{2 - \sqrt3}$$ 

Rationalising the denominator by multiplying and diving with 2+$$\sqrt3$$ we get,

$$\frac{(2 + \sqrt3)\times (2 + \sqrt3) }{(2 - \sqrt3)\times (2 + \sqrt3) } = \frac {(2 + \sqrt3)^2}{4 - 3} = (2 + \sqrt3)^2$$

Now,

 $$\sqrt{\frac{2 + \sqrt3}{2 - \sqrt3}} = \sqrt{(2 + \sqrt3)^2} = 2 + \sqrt3 = 2 + 1.732 = 3.732$$

Video Solution

video

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with detau solutions PDF
  • Top 500 MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App